Homework 6 Math 2L03

- 1. Use the <u>definition of derivatives</u> to find the derivatives of the following functions
 - (a) $f(x) = x^2 + x + 4$ (b) $g(t) = \frac{1}{t+3}$ (c) $h(x) = \sqrt{x+4}$

2. Compute the derivative of the following functions and simplify if possible

a) $f(x) = x^{33} + 4x^{12} + 3x^4 + \sqrt{42}x$ n) $f(x) = \sqrt{\sin\sqrt{x^2 + 5}}$ o) $g(x) = \frac{x}{\sqrt{(x^4 + 1)}}$ b) $q(y) = \sin y + \cos y + \tan y$ c) $h(t) = (t^4 + 6) \sin t$ p) $p(v) = (v^3 + v + 4)^5 (2v^3 + 3v^2 + 2)^4$ d) $f(s) = \cot s$ q) $\phi(x) = \frac{1}{\sqrt[3]{x + \sqrt[3]{x}}}$ e) $h(z) = \frac{\sin z}{z^3 + z^2 + 3z + 1}$ f) $r(x) = \sqrt{x}(x^3 + 3x + 3)$ r) $\psi(t) = \sin^2\left(\frac{t^3+1}{t^2+2t}\right)$ g) $F(v) = \frac{v^3 + 3v^2 + 4}{v}$ s) $f(x) = \tan(\ln x)$ h) $Q(y) = (1 - y^{-1})^{-1}$ t) $y = x^{x}$ i) $R(m) = \sqrt[5]{\frac{m^2}{\sec m}}$ u) $h(x) = \cos(x^{\sin x})$ v) $F(t) = e^{t \cos^2 t}$ j) $S(p) = (p^3 + 2p^2 + 4)^5 (3p^2 + 4)^3$ w) $y = \sqrt{1 + e^x \ln(x^2 + 1)}$ k) $T(x) = \frac{(x-1)(x-4)}{(x-2)(x-3)}$ x) $p(x) = \left[\ln(x^3 + 2x + 2) \right]^4$ y) $q(x) = x^2 \log_8 \sqrt{x}$ 1) $G(z) = \sin 3z \cos 3z$ m) $H(t) = t^4 \sin t \cos t$ z) $y = x^{\sec x}$

3. Calculate the first and second derivative of the following functions

(a)
$$y = \frac{x^2 - 2\sqrt{x}}{x}$$

(b) $v = \sqrt[5]{u^3} - 4\sqrt[7]{u^{11}}$
(c) $z = \cos(x^2)$

4. Find the equation of the tangent line and the normal line to the curve at the given point

(a) $y = x^2 + x + 3$ at x = 1(b) $y = \sqrt{1 + x^3}$ at x = 2(c) $y = 6 \cos x$ at $(\frac{\pi}{3}, 3)$

- (d) $y = \sin(\sin(x))$ at $(\pi, 0)$
- 5. Use logarithmic differentiation to find the derivative of

$$y = \frac{(x+1)^3(x-3)^4}{\sqrt[4]{\sin x}}.$$

6. Find $\frac{d^{74}}{dx^{74}}(\sin x)$

- 7. Find the n-th derivative of $f(x) = x^n$
- 8. For what values of x does the graph of $f(x) = x^3 6x^2 15x + 4430$ have a horizontal tangent line?
- 9. Show that the curve $y = 12x^3 + 10x 3$ has no tangent line with slope 8.
- 10. If f and g are a differentiable functions, find an expression for the derivative of each of the following function

(a)
$$y = x^n f(x)$$

(b) $y = \frac{1 + xf(x)}{\sqrt[3]{x^2}}$
(c) $y = x^3 f(x^5)$
(d) $y = \frac{f(x)g(x)}{f(x) + g(x)}$

- 11. Suppose that h(x) = f(x)g(x) and F(x) = f(g(x)), where f(2) = 3, g(2) = 5, g'(2) = 4, f'(2) = -2 and f'(5) = 11. Find a) h'(2) and b)F'(2)
- 12. At what point on the curve $y = [\ln(x+4)]^2$ is the tangent line horizontal.
- 13. Evaluate the following limits (By expressing the limit as a derivative)

(a)
$$\lim_{x \to 1} \frac{x^{4000} - 1}{x - 1}$$

(b) $\lim_{h \to 0} \frac{\sqrt[4]{16 + h} - 2}{h}$